056142 – Membrane Separation and Purification Processes

Lecture Topics


1.1       General characteristics of membrane processes

1.2      Flux and selectivity

1.3       General principles and current status of membrane processes

1.4      Sales data and economic forecasts

1.5      Milestones in the development of industrial membrane processes


2.1   General requirements

2.2   Classifications of membranes

2.3   Classification of membranes according to size of separated species

2.4   Membrane materials

2.5   Membrane production processes

A.      Microporous membranes

B.      Development of symmetric membranes

C.      Phase inversion membranes

D.      Composite membranes

E.       Ion exchange membranes

F.       Inorganic membranes

2.6   Membrane modules

2.7   Characterization of porous membranes

A.      Electron microscopy

B.      Bubble point method

C.      Permeability methods

D.      Mercury porosimetry

E.       Bacteria integrity tests

2.8   Characterization of U/F membranes

A.      Electron microscopy

B.      Capillary adsorption-desorption

C.      Thermoporometry

D.      Permporometry

E.       Solute rejection measurements

2.9   Characterization of non-porous membranes

A.      Permeability determination

B.      DSC methods

C.      Wide angle X ray diffraction (WAXS)

D.      Surface analysis methods


3.1   Driving forces and transported species

3.2   Osmotic pressure

3.3   Membrane transport expressions from irreversible thermodynamics

A.      Basic I/T equations

B.      Kedem-Katchalsky model

C.      Spiegler-Kedem model

3.4   Frictional transport model

3.5   Solution diffusion model

3.6   Preferential sorption capillary flow model

3.7   Porous flow models

A.      Introductory remarks

B.      Solute rejection in a highly porous membrane

C.      Solute rejection in a finely porous membrane

D.      Ultrafiltration fine pores model

E.       Limitations of models

3.8   Donnan equilibria in electrolyte solutions

A.      Basic relationships

B.      Donnan exclusion

C.      Donnan equilibria with perm-selective membranes

D.      Donnan equilibria in the presence of a non-permeating ion

3.9   Diffusional transport of concentration driven Donnan processes

A.      Basic relationships

B.      Donnan dialysis with perm-selective membranes

C.      Donnan dialysis in the presence of a non-permeating ion


4.1   Reverse osmosis (hyperfiltration)

A.      Overview

B.      Concentration polarization

C.      Experimental determination of the mass transfer coefficient

D.      R/O calculations taking into account C/P

E.       R/O process flow sheets

F.       R/O design calculations

G.     R/O membranes

H.      Operational aspects

I.        Feed pretreatment

4.2   Ultrafiltration

A.      Overview

B.      Main applications

1.       Protein recovery from whey

2.       Electrocoat paint recovery

3.       Milk concentration

4.       Food and beverage applications

5.       Oily wastewaters separations

6.       Pharmaceutical and biotechnology applications

7.       Textile sizing

8.       Pulp and paper industry

9.       Future prospects

C.      Concentration polarization phenomena in U/F

D.      Limiting flux models

1.       Gel layer model

2.       Osmotic pressure model

3.       Resistance models

E.       The flux paradox

F.       U/F process design

G.     Fouling of U/F membranes

1.       General background.

2.       Fouling processes.

3.       Fouling models

4.       Fouling control measures

4.3   Gas separation

A.      Overview

B.      Permeation rate equation and membrane selectivity

C.      Gas separation with porous membranes

D.      Structural aspects of non-porous polymeric membranes

E.       Gas permeability models for non-porous membranes

1.       Transport in rubbery membranes

2.       Transport inglassy membranes

3.       General comparison of glassy and rubbery membranes

4.       Factors affecting permeabilities and selectivities of gases

F.       Gas separation process design

1.       Process conditions favoring gas separation by membranes

2.       Basic flow patterns

3.       Analysis of mixed flow gas separation of a binary mixture

4.       Analysis of countercurrent gas separation of a binary mixture

5.       System configuration schemes in gas separation

G.     Current applications

1.       Hydrogen recovery

2.       Air separations

3.        Helium recovery

4.       Removal of acid gases from light hydrocarbons

5.       CO2 recycle for enhanced oil recovery

6.       Biogas processing

7.       Other applications 4.4   Pervaporation (PV)

A.      Overview

1.       Process principle

2.       Advantages of the process

3.       Problematical features

4.       Commercialization of process

5.       Applications

B.      Membrane aspects

1.       Desired properties

2.       Selectivity versus permeability

3.       Hydrophobic versus hydrophyllic membranes

4.       Coupling effects

C.      Pure liquid permeation model

D.      Pervaporation of binary mixtures

1.       Graphical representation by Thompson diagrams

E.       Design Aspects


054305 – Separation Operations 2

Teaching Staff

Lecturer: Professor Emeritus David Hasson

Email:                  hasson@ technion.ac.il

Telephone:          04-829-2936

Office hours:      TBA

Office:                 Chemical Engineering, Room 321

Lectures:             TBA

Teaching assistant: TBA

Contact Hours per Week

Lecture: 2 Hours

Recitation: 1 Hour

2.5 Credits