Prof. Hossam Haick

 The Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 3200003, Israel.

Tel.: +972-4-8293087; Email: hhossam@technion.ac.il

  Nanotechnology and sensors is a course for people who are interested in learning about novel sensing tools that makes use of nanotechnology (a technology that relies in the regime between one to hundred nanometers, viz. billionths of the meters) to screen, and monitor various events in either our personal or professional life. Together, we will discover the fascinating world of nanoland that bumps up against the basic building blocks of matter. As such, we will lay the groundwork for infinite innovative applications in every part of our daily life, starting from in-vivo and ex-vivo diagnosis and treatments of diseases, continuing with quality control of goods and environmental aspects, and ending with monitoring security issues. In this endeavor, we will learn how to fabricate such new tools, how to characterize them, how to control them, and how to integrate them in the various applications.

Workload: 4-6 hours/week

Sessions: July 2016 (12 lessons)

Course Description

Nanotechnology and sensors are broad, interdisciplinary areas that encompass (bio)chemistry, physics, biology, materials science, electrical engineering and more. The present course will provide a survey on some of the fundamental principles behind nanotechnology and nanomaterials and their vital role in novel sensing properties and applications. The course will discuss interesting interdisciplinary scientific and engineering knowledge at the nanoscale to understand fundamental physical differences at the sensors. By the end of the course, students will understand the fabrication, characterization, and manipulation of nanomaterials, sensors, and how they can be exploited for new applications. Also, students will apply their knowledge of nanotechnology and sensors to a topic of personal interest in this course.

Course Objectives

  1. Understanding the importance of nanoscale materials for sensing applications.
  2. Knowledge on the approaches used for characterizing sensors based nanomaterials.
  3. Knowledge on the approaches used for tailoring nanomaterials for a specific sensing application.
  4. Knowledge of metallic and semiconductor nanoparticles.
  5. Knowledge of organic and inorganic nanotubes and nanowires.
  6. Knowledge of optical, mechanical and chemical sensors based on nanomaterials.
  7. Knowledge of hybrid nanomaterial-based sensors.

 Course Readings

  • Jiří Janata, Principles of Chemical Sensors, Springer, 2d Edition (1989).
  • Roger George Jackson, Novel Sensors and Sensing, CRC Press (2004).

 Course Outline

Lesson 1: Introduction to Nanotechnology: Definition of nanotechnology; main features of nanomaterials; types of nanostructures (0D, 1D, and 2D structures); nanocomposites; and main chemical/physical/electrical/optical properties of nanomaterials.

Lesson 2: Introduction to Nanotechnology – continue: Methods for characterizing the nanomaterials: Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and spectroscopy- and spectrometry-based surface analysis techniques. Fabrication of sensors by bottom-up and top-down approaches; self-assembly of nanostructures; and examples for nanotechnology application

Lesson 3: Introduction to Sensors’ Science and Technology: Definition of sensors; main elements of sensors; similarities between living organisms and artificial sensors; working mechanism of physical sensation (seeing, hearing, and feeling) and chemical sensation (smelling and tasting); the parameters used for characterizing the performance of sensors: accuracy, precision, sensitivity, detection limit, dynamic range, selectivity, linearity, resolution, response time, hysteresis, and life cycle.

Lesson 4: Metal nanoparticle-based Sensors: Definition of nanoparticle; features of nanoparticles; and production of nanoparticles by physical approach (laser ablation) and chemical approaches (Brust method, seed-mediated growth, etc.).

Lesson 5: Metal nanoparticle-based Sensors (cont.): Applications of metal nanoparticle-based sensors in (bio)chemical, environmental and biomedical engineering.

Lesson 6: Quantum Dot Sensors: Definition of quantum dot; fabrication techniques of quantum dots; Macroscopic and microscopic photoluminescence measurements; applications of quantum dots as multimodal contrast agents in bioimaging; and application of quantum dots as biosensors.

Lesson 7: Nanowire-based Sensors: Definition of nanowires; features of nanowires; fabrication of individual nanowire by top-down approaches and bottom-up approaches; and fabrication of nanowire arrays (fluidic channel, blown bubble film, contact printing, spray coating, etc.).

Lesson 8: Nanowire-based Sensors (cont.): Applications of metal nanoparticle-based sensors in (bio)chemical, environmental and biomedical engineering.

Lesson 9: Carbon Nanotubes-based Sensors: Definition of carbon nanotube; features of carbon nanotubes; synthesis of carbon nanotubes; fabrication and working principles of sensors based on individual carbon nanotube; fabrication and working principles of sensors based on random array of carbon nanotubes.

Lesson 10: Sensors Based on Nanostructures of Metal Oxide: Synthesis of metal oxide structures by dry and wet methods; types of metal oxide gas sensors (0D, 1D, and 2D); defect chemistry of the metal oxide sensors; sensing mechanism of metal-oxide gas sensors; and porous metal-oxide structures for improved sensing applications.

Lesson 11: Mass-Sensitive sensors: Working principle of sensors based on polymeric nanostructures; sensing mechanism and applications of nanomaterial-based of chemiresistors and field effect transistors of (semi-)conductive polymers, w/o inorganic materials.

Lesson 12: Arrays of Nanomaterial-based Sensors: A representative example for the imitation of human senses by means of nanotechnology and sensors: electronic skin based on nanotechnology.

 Grading Policy

This course will have three types of graded activities that will be included in your overall course grade. These include:

  • Weekly quizzes: At the end of each class, you will be asked to complete a quiz. These quizzes will provide you with an opportunity to review what you have learned throughout the week. You may take these quizzes as many times as you wish. Once answered correctly, the weekly quizzes will count for 30% of your overall course grade.
  • Final project: At the end of the course you will be asked to complete a final project. The final project will be conducted in groups of 1 to 2 students. It will consist of a written report that focuses on the utilization of nanotechnology and sensors to imitate a specific sense that relates to human senses: vision, hearing, taste, smell, or touch. Other non-specific senses such as balance and pains can be included as well.
  • The final project should include, but not confined to: (a) multidisciplinary presentation and discussion of the overall design approach; (b) fabrication; (c) characterization; and (d) application of the targeted artificial sense. The report shall NOT exceed 10 pages, written in 11-12 font size, 1.5 line spacing, and 2.5 cm margins from each side of the document. The final project will be graded by your peers, according to a grading rubric, accounting for 70% of your overall course grade.